On a class of Polish-like spaces

Claudio Agostini

Università degli Studi di Torino

WS2020 27 January 2020

Joint work with Luca Motto Ros

DST: GDST:

Cantor space ${}^{\omega}2 \quad \rightsquigarrow \quad \kappa\text{-Cantor space }{}^{\kappa}2$

Baire space ${}^{\omega}\omega \quad \rightsquigarrow \quad \kappa$ -Baire space ${}^{\kappa}\kappa$

Polish spaces $\sim \kappa$ -Polish spaces?

Context: cardinals κ satisfying $\kappa^{<\kappa} = \kappa$.

DST: GDST: Cantor space $\omega_2 \sim \kappa$ -Cantor space κ_2 Baire space $\omega_\omega \sim \kappa$ -Baire space κ_κ Polish spaces $\sim \kappa$ -Polish spaces? Context: cardinals κ satisfying $\kappa^{<\kappa} = \kappa$.

Is the assumption $\kappa^{<\kappa} = \kappa$ necessary?

- DST: GDST:
- Cantor space ${}^{\omega}2 ~ \rightsquigarrow ~ \kappa$ -Cantor space ${}^{\kappa}2$

Baire space $\omega \omega \rightarrow \kappa$ -Baire space $\kappa \kappa$

Polish spaces $\sim \kappa$ -Polish spaces?

Context: cardinals κ satisfying $\kappa^{<\kappa} = \kappa$.

Is the assumption $\kappa^{<\kappa} = \kappa$ necessary?

If κ regular, $\kappa^{<\kappa} = \kappa$ is equivalent to $2^{<\kappa} = \kappa$, but the latter allows to extend the definition to singular cardinals.

DST: GDST:

Cantor space ${}^{\omega}2 \rightarrow \lambda$ -Cantor space ${}^{\lambda}2$

Baire space $\omega \omega \rightarrow \lambda$ -Baire space $cf(\lambda)\lambda$

Polish spaces $\rightsquigarrow \lambda$ -Polish spaces?

Context: cardinals λ satisfying $2^{<\lambda} = \lambda$ (equivalent to $\lambda^{<\lambda} = \lambda$ if λ regular).

DST: GDST:

Cantor space ${}^{\omega}2 \rightarrow \lambda$ -Cantor space ${}^{\lambda}2$

Baire space $\omega \omega \rightarrow \lambda$ -Baire space $cf(\lambda)\lambda$

Polish spaces $\rightsquigarrow \lambda$ -Polish spaces?

Context: cardinals λ satisfying $2^{<\lambda} = \lambda$ (equivalent to $\lambda^{<\lambda} = \lambda$ if λ regular).

V. Dimonte, L. Motto Ros and X. Shi, forthcoming paper on GDST on singular cardinals of countable cofinality.

Aim: study GDST on λ singular of uncountable cofinality.

What we want:

A suitable class λ -DST of Polish-like spaces of weight λ that:

- includes $^{\lambda}2$ and $^{cf(\lambda)}\lambda$.
- 2 can support most of DST tools and results.
- (a) for $\lambda = \omega$ gives exactly Polish spaces.
- **(**) goes well with different definitions of λ -Polish for other known cases.

Context: T_3 (regular and Hausdorf) topological spaces, cardinals λ satisfying $2^{<\lambda} = \lambda$.

What is known: λ singular

Why should we want to study these spaces for λ singular?

What is known: λ singular

Why should we want to study these spaces for λ singular?

Lambda singular recovers parts of classical DST that "fail" (or simply are much different/harder) in GDST on κ regular.

Why should we want to study these spaces for λ singular?

Lambda singular recovers parts of classical DST that "fail" (or simply are much different/harder) in GDST on κ regular.

 λ singular of countable cofinality: much can be recovered (PSP_{Σ_1^1}, Silver Dichotomy, ...) (V. Dimonte, L. Motto Ros and X. Shi, forthcoming)

Definition

Let λ be a (singular) cardinal of countable cofinality. A λ -Polish space is a completely metrizable space of weight λ . Why should we want to study these spaces for λ singular?

Lambda singular recovers parts of classical DST that "fail" (or simply are much different/harder) in GDST on κ regular.

 λ singular of countable cofinality: much can be recovered (PSP_{Σ_1^1}, Silver Dichotomy, ...) (V. Dimonte, L. Motto Ros and X. Shi, forthcoming)

Definition

Let λ be a (singular) cardinal of countable cofinality. A λ -Polish space is a completely metrizable space of weight λ .

Remark

The λ -Cantor and λ -Baire spaces are metrizable if and only if $cf(\lambda) = \omega$.

Theorem

Let X be a second countable $(T_1, regular)$ space. Then

- X is metrizable.
- X is Polish if and only if X is strong Choquet.

Theorem

Let X be a second countable $(T_1, regular)$ space. Then

- X is metrizable.
- X is Polish if and only if X is strong Choquet.

Definition

• V_{α} and U_{α} are nonempty (if possible) open sets.

- $V_{\alpha} \subseteq U_{\beta} \subseteq V_{\gamma}$ for every $\gamma \leq \beta < \alpha < \omega$.
- $x_{\alpha} \in V_{\alpha}$ and $x_{\alpha} \in U_{\alpha}$ for every $\alpha < \omega$.

The first player I wins if $\bigcap_{\alpha < \omega} U_{\alpha} = \emptyset$, otherwise II wins.

Theorem

Let X be a second countable $(T_1, regular)$ space. Then

- X is metrizable.
- X is Polish if and only if X is strong Choquet.

Definition

The *strong* δ -*Choquet game* on *X* is played in the following way: $I \mid V_0, x_0 \qquad V_1, x_1 \qquad \dots \qquad V_{\gamma}, x_{\gamma} \qquad \dots$

• V_{α} and U_{α} are nonempty (if possible) relatively open sets.

- $V_{\alpha} \subseteq U_{\beta} \subseteq V_{\gamma}$ for every $\gamma \leq \beta < \alpha < \delta$.
- $x_{\alpha} \in V_{\alpha}$ and $x_{\alpha} \in U_{\alpha}$ for every $\alpha < \delta$.

The first player I wins if $\bigcap_{\alpha < \delta} U_{\alpha} = \emptyset$, otherwise II wins.

Coskey and Schlicht, *Generalized choquet spaces*, 2016: Let κ be a regular cardinal. The class of strong κ -Choquet spaces has desirable properties for GDST. Coskey and Schlicht, *Generalized choquet spaces*, 2016: Let κ be a regular cardinal. The class of strong κ -Choquet spaces has desirable properties for GDST.

Can we take the same class for λ singular?

Remark

Let λ be a singular cardinal. There are strong λ -Choquet topological spaces of weight λ with "patological" behaviour.

What goes wrong? For λ regular the spaces preserve some properties of metric spaces that are not preserved for λ singular. Coskey and Schlicht, *Generalized choquet spaces*, 2016: Let κ be a regular cardinal. The class of strong κ -Choquet spaces has desirable properties for GDST.

Can we take the same class for λ singular?

Remark

Let λ be a singular cardinal. There are strong λ -Choquet topological spaces of weight λ with "patological" behaviour.

What goes wrong? For λ regular the spaces preserve some properties of metric spaces that are not preserved for λ singular.

Polish

Second countablity	
Completeness	
Metrizability	

λ -C	SТ
weig	ht λ
strong $cf(\lambda)$ -Choo	quet
	?

~ ~ ~

Polish		λ -DST
Second countablity	~>	weight λ
Completeness	~>	strong $cf(\lambda)$ -Choquet
Metrizability	\sim	?

Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only X admits a σ -locally finite base.

Definition

Let X be a topological space, and A a family of subsets of X. We say A is locally finite if every point $x \in X$ has a neighborhood U intersecting finitely many pieces of A. We say A is σ -locally finite if it has a cover $A = \bigcup_{i \in \omega} A_i$ of countable size such that each A_i is locally finite.

Polish		λ -DST
Second countablity	~>	weight λ
Completeness	~>	strong $cf(\lambda)$ -Choquet
Metrizability	\sim	?

Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only X admits a σ -locally finite base.

Definition

Let X be a topological space, and A a family of subsets of X. We say A is locally finite if every point $x \in X$ has a neighborhood U intersecting finitely many pieces of A. We say A is σ -locally finite if it has a cover $A = \bigcup_{i \in \omega} A_i$ of countable size such that each A_i is locally finite.

Polish		λ -DST
Second countablity	~*	weight λ
Completeness	~>	strong $cf(\lambda)$ -Choquet
Metrizability	~7	?

Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only X admits a σ -locally finite base.

Definition

Let X be a topological space, and A a family of subsets of X. We say A is locally γ -small if every point $x \in X$ has a neighborhood U intersecting $< \gamma$ many pieces of A. We say A is γ -Nagata-Smirnov if it has a cover $A = \bigcup_{i \in \gamma} A_i$ of size γ such that each A_i is locally γ -small.

Polish		λ -DST
Second countablity	~*	weight λ
Completeness	\sim	strong $cf(\lambda)$ -Choquet
Metrizability	\sim	$cf(\lambda)$ -Nagata-Smirnov base

Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only X admits a ω -Nagata-Smirnov base.

Definition

Let X be a topological space, and A a family of subsets of X. We say A is locally γ -small if every point $x \in X$ has a neighborhood U intersecting $\langle \gamma \rangle$ many pieces of A. We say A is γ -Nagata-Smirnov if it has a cover $A = \bigcup_{i \in \gamma} A_i$ of size γ such that each A_i is locally γ -small.

$\lambda\text{-}\mathsf{DST}$ spaces

Definition

Let λ be a cardinal. We call λ -DST a strong cf(λ)-Choquet topological space of weight λ with a cf(λ)-Nagata-Smirnov base.

Definition

Let λ be a cardinal. We call λ -DST a strong cf(λ)-Choquet topological space of weight λ with a cf(λ)-Nagata-Smirnov base.

Every base of size λ is $\lambda\text{-Nagata-Smirnov:}$ it can be covered by λ many singletons.

Proposition

Let λ be a cardinal.

• If λ regular, λ -DST means strong λ -Choquet of weight λ .

Definition

Let λ be a cardinal. We call λ -DST a strong cf(λ)-Choquet topological space of weight λ with a cf(λ)-Nagata-Smirnov base.

Every base of size λ is $\lambda\text{-Nagata-Smirnov:}$ it can be covered by λ many singletons.

Proposition

Let λ be a cardinal.

- If λ regular, λ -DST means strong λ -Choquet of weight λ .
- If $\lambda = \omega$, λ -DST means Polish.

Definition

Let λ be a cardinal. We call λ -DST a strong cf(λ)-Choquet topological space of weight λ with a cf(λ)-Nagata-Smirnov base.

Every base of size λ is $\lambda\text{-Nagata-Smirnov:}$ it can be covered by λ many singletons.

Proposition

Let λ be a cardinal.

- If λ regular, λ -DST means strong λ -Choquet of weight λ .
- If $\lambda = \omega$, λ -DST means Polish.
- If λ uncountable of countable cofinality, λ-DST means completely metrizable of weight λ. (proof to be checked)

Examples and non-examples

Examples of λ -DST spaces:

- **1** The λ -Cantor and λ -Baire spaces.
- 2 Completely metrizable spaces of weight λ .
- So For every tree T of density λ and uniform height, [T] with the bounded topology is λ -DST.
- **9** If X is λ -DST, then $\mathcal{K}(X)$ with the Vietoris topology is λ -DST.
- **③** Disjoint unions of λ -many λ -DST spaces are λ -DST.
- **o** Products of $cf(\lambda)$ -many λ_i -DST spaces are $sup(\lambda_i)$ -DST.
- Open subspaces of a λ -DST are λ -DST.

Non-examples:

- Products of $> cf(\lambda)$ many non-trivial spaces are never λ -DST.
- **2** If $cf(\lambda) > \omega$, there is a closed subspace of λ^2 which is not λ -DST.
- **3** If $cf(\lambda) > \omega$, there is a λ -DST space whose perfect part is not λ -DST.

Theorem ([2, Theorem 7.9])

Let X be a Polish space. There is a continuous surjective function $f: {}^{\omega}\omega \to X$ and a closed $C \subseteq {}^{\omega}\omega$ such that $f \upharpoonright C$ is bijective.

Theorem ([2, Theorem 7.9])

Let X be a Polish space. There is a continuous surjective function $f: {}^{\omega}\omega \to X$ and a closed $C \subseteq {}^{\omega}\omega$ such that $f \upharpoonright C$ is bijective.

Coskey, Schlicht [1]: similar result for strong λ -Choquet, λ regular. V. Dimonte, L. Motto Ros, X. Shi: similar results for λ -Polish, cf(λ) = ω .

Theorem ([2, Theorem 7.9])

Let X be a Polish space. There is a continuous surjective function $f: {}^{\omega}\omega \to X$ and a closed $C \subseteq {}^{\omega}\omega$ such that $f \upharpoonright C$ is bijective.

Coskey, Schlicht [1]: similar result for strong λ -Choquet, λ regular. V. Dimonte, L. Motto Ros, X. Shi: similar results for λ -Polish, cf(λ) = ω .

Theorem (A., Motto Ros)

Let X be a λ -DST space. There is a continuous surjective function $f: {}^{cf(\lambda)}\lambda \to X$ and a closed $C \subseteq {}^{cf(\lambda)}\lambda$ such that $f \upharpoonright C$ is bijective.

We can get more:

Theorem (A., Motto Ros)

Suppose X is a $cf(\lambda)$ -additive λ -DST space and $cf(\lambda) > \omega$. Then X is homeomorphic to a (super)closed subspace of $cf(\lambda)\lambda$.

(needs some cardinal assumption if λ -singular)

Recall: X is γ additive if the intersection of $\langle \gamma \rangle$ open sets is open. **Recall:** C superclosed if C = [T] for T homogeneous in height. **Recall:** A tree T is homogeneous in height if every branch has same height. Theorem ([2, Theorem 6.2])

Let X be a prefect Polish space. There is an embedding of $\omega 2$ into X.

Let X be a prefect Polish space. There is an embedding of $^{\omega}2$ into X.

Coskey, Schlicht [1]: let X be λ -perfect, strong λ -Choquet for λ regular. There is a continuous injective function from $^{\lambda}2$ into X. V. Dimonte, L. Motto Ros, X. Shi: let X be λ -perfect λ -Polish space. There is an embedding of $^{\lambda}2$ into X with closed image.

Definition: X λ -perfect if no intersetion of $\langle cf(\lambda) \rangle$ opens has size $\langle \lambda \rangle$.

Let X be a prefect Polish space. There is an embedding of $^{\omega}2$ into X.

Coskey, Schlicht [1]: let X be λ -perfect, strong λ -Choquet for λ regular. There is a continuous injective function from $^{\lambda}2$ into X. V. Dimonte, L. Motto Ros, X. Shi: let X be λ -perfect λ -Polish space. There is an embedding of $^{\lambda}2$ into X with closed image.

Theorem (A., Motto Ros)

Let X be a λ -perfect λ -DST space. There is a continuous injective function from $^{\lambda}2$ into X with λ -Borel inverse.

Theorem (A., Motto Ros)

Let X be a λ -perfect cf(λ)-additive λ -DST space. There is an embedding of $^{\lambda}2$ into X with closed image.

Theorem (A., Motto Ros)

If there exists $A \subseteq {}^{cf(\lambda)}\lambda$ without the Perfect Set Property, then there exists a λ -DST subset $B \subseteq {}^{cf(\lambda)}\lambda$ without the PSP.

Theorem (A., Motto Ros)

If there exists $A \subseteq {}^{cf(\lambda)}\lambda$ without the Perfect Set Property, then there exists a λ -DST subset $B \subseteq {}^{cf(\lambda)}\lambda$ without the PSP.

Super λ -Choquet game: same game as before, but players can play only big open sets (of size $> \lambda$).

Super λ -**DST:** super λ -Choquet game instead of strong λ -Choquet.

Theorem (A., Motto Ros)

If there exists $A \subseteq {}^{cf(\lambda)}\lambda$ without the Perfect Set Property, then there exists a λ -DST subset $B \subseteq {}^{cf(\lambda)}\lambda$ without the PSP.

Super λ -Choquet game: same game as before, but players can play only big open sets (of size > λ). **Super** λ -DST: super λ -Choquet game instead of strong λ -Choquet.

Theorem (A., Motto Ros)

Let X be a λ -DST space. Then the perfect kernel of X is λ -DST if and only if X is super λ -DST.

Corollary

Let X be super λ -DST. Then $|X| \le \lambda$ or there is a continuous injective function from λ^2 into X.

S. Coskey and P. Schlicht. Generalized choquet spaces. Fund. Math., 232:227–248, 2016.

A. Kechris.

Classical descriptive set theory, volume 156. Springer Science & Business Media, 2012.